32 research outputs found

    Social Anchor: Privacy-Friendly Attribute Aggregation From Social Networks

    Get PDF
    In the last decade or so, we have experienced a tremendous proliferation and popularity of different Social Networks (SNs), resulting more and more user attributes being stored in such SNs. These attributes represent a valuable asset and many innovative online services are offered in exchange of such attributes. This particular phenomenon has allured these social networks to act as Identity Providers (IdPs). However, the current setting unnecessarily imposes a restriction: a user can only release attributes from one single IdP in a single session, thereby, limiting the user to aggregate attributes from multiple IdPs within the same session. In addition, our analysis suggests that the manner by which attributes are released from these SNs is extremely privacy-invasive and a user has very limited control to exercise her privacy during this process. In this article, we present Social Anchor, a system for attribute aggregation from social networks in a privacy-friendly fashion. Our proposed Social Anchor system effectively addresses both of these serious issues. Apart from the proposal, we have implemented Social Anchor following a set of security and privacy requirements. We have also examined the associated trust issues using a formal trust analysis model. Besides, we have presented a formal analysis of its protocols using a state-of-the-art formal analysis tool called AVISPA to ensure the security of Social Anchor. Finally, we have provided a performance analysis of Social Anchor

    Smart Relay Selection Scheme Based on Fuzzy Logic with Optimal Power Allocation and Adaptive Data Rate Assignment

    Get PDF
    In this paper fuzzy logic-based algorithm with improved process of relay selection is presented which not only allocate optimal power for transmission but also help in choosing adaptive data rate. This algorithm utilizes channel gain, cooperative gain and signal to noise ratio with two cases considered in this paper: In case-I nodes do not have their geographical location information while in case-II nodes are having their geographical location information. From Monte Carlo simulations, it can be observed that both cases improve the selection process along with data rate assignment and power allocation, but case-II is the most reliable with almost zero probability of error at the cost of computational complexity which is 10 times more than case-I

    Machine Learning for Predictive Analytics in Social Media Data

    Get PDF
    Machine Learning (ML) has become a potent predictive analytics tool in several fields, including the study of social media data. Social media sites have developed into massive repositories of user-generated information, providing insightful data about user trends, interests, and behavior. This abstract emphasizes the use of machine learning methods for predictive analytics in social media data and examines the potential and problems unique to this field. Utilizing the capabilities of machine learning algorithms to identify significant trends and forecast user behavior from social media data is the goal of this study. The study makes use of a sizable dataset made up of user profiles, blog posts, comments, and engagement metrics gathered from well-known social networking sites. Predictive models are created using a variety of machine learning algorithms, such as ensemble methods, neural networks, decision trees, and support vector machines. As a result, this study emphasizes how important machine learning is for doing predictive analytics on social media data. The employment of diverse algorithms and preprocessing methods yields insightful information about user behavior and enables precise prediction of user behaviors. To improve the prediction powers of machine learning in this area, future research should concentrate on tackling the obstacles related to social media data, such as privacy concerns and data quality issues

    Dichotomy model based on the finite element differential equation in the educational informatisation teaching reform model

    No full text
    The dichotomy model of education informatisation is essential, which means the measurement of education informatisation construction and development. Finite element differential equations play an essential role in signal and information teaching. To improve teaching information, the paper applies the dichotomy model of finite element differential equations to the reform of physics education information teaching. This article fully introduces the basic principles of the dichotomy model in finite element differential equations and introduces several analysis methods of the inverse Laplace transform of differential equations. At last, the method is applied to the informatisation of physics education to improve the quality of teaching

    An efficient resource optimization scheme for D2D communication

    No full text
    With the rapid development of wireless technologies, wireless access networks have entered their Fifth-Generation (5G) system phase. The heterogeneous and complex nature of a 5G system, with its numerous technological scenarios, poses significant challenges to wireless resource management, making radio resource optimization an important aspect of Device-to-Device (D2D) communication in such systems. Cellular D2D communication can improve spectrum efficiency, increase system capacity, and reduce base station communication burdens by sharing authorized cell resources; however, can also cause serious interference. Therefore, research focusing on reducing this interference by optimizing the configuration of shared cellular resources has also grown in importance. This paper proposes a novel algorithm to address the problems of co-channel interference and energy efficiency optimization in a long-term evolution network. The proposed algorithm uses the fuzzy clustering method, which employs minimum outage probability to divide D2D users into several groups in order to improve system throughput and reduce interference between users. An efficient power control algorithm based on game theory is also proposed to optimize user transmission power within each group and thereby improve user energy efficiency. Simulation results show that these proposed algorithms can effectively improve system throughput, reduce co-channel interference, and enhance energy efficiency

    Constructing Artistic Surface Modeling Design Based on Nonlinear Over-limit Interpolation Equation

    No full text
    The digital and physical methods of establishing minimal curved surfaces are the basis for realizing the design of the minimal curved surface modeling structure. Based on this research background, the paper showed an artistic surface modeling method based on nonlinear over-limit difference equations. The article combines parameter optimization and 3D modeling methods to model the constructed surface modeling. The research found that the nonlinear out-of-limit difference equation proposed in the paper is more accurate than the standard fractional differential equation algorithm. For this reason, the method can be extended and applied to the design of artistic surface modeling

    Blockchain with Internet of Things: benefits, challenges, and future directions

    No full text
    The Internet of Things (IoT) has extended the internet connectivity to reach not just computers and humans, but most of our environment things. The IoT has the potential to connect billions of objects simultaneously which has the impact of improving information sharing needs that result in improving our life. Although the IoT benefits are unlimited, there are many challenges facing adopting the IoT in the real world due to its centralized server/client model. For instance, scalability and security issues that arise due to the excessive numbers of IoT objects in the network. The server/client model requires all devices to be connected and authenticated through the server, which creates a single point of failure. Therefore, moving the IoT system into the decentralized path may be the right decision. One of the popular decentralization systems is blockchain. The Blockchain is a powerful technology that decentralizes computation and management processes which can solve many of IoT issues, especially security. This paper provides an overview of the integration of the blockchain with the IoT with highlighting the integration benefits and challenges. The future research directions of blockchain with IoT are also discussed. We conclude that the combination of blockchain and IoT can provide a powerful approach which can significantly pave the way for new business models and distributed applications

    A Survey on Tools and Techniques for Localizing Abnormalities in X-ray Images Using Deep Learning

    No full text
    Deep learning is expanding and continues to evolve its capabilities toward more accuracy, speed, and cost-effectiveness. The core ingredients for getting its promising results are appropriate data, sufficient computational resources, and best use of a particular algorithm. The application of these algorithms in medical image analysis tasks has achieved outstanding results compared to classical machine learning approaches. Localizing the area-of-interest is a challenging task that has vital importance in computer aided diagnosis. Generally, radiologists interpret the radiographs based on their knowledge and experience. However, sometimes, they can overlook or misinterpret the findings due to various reasons, e.g., workload or judgmental error. This leads to the need for specialized AI tools that assist radiologists in highlighting abnormalities if exist. To develop a deep learning driven localizer, certain alternatives are available within architectures, datasets, performance metrics, and approaches. Informed decision for selection within the given alternative can lead to batter outcome within lesser resources. This paper lists the required components along-with explainable AI for developing an abnormality localizer for X-ray images in detail. Moreover, strong-supervised vs weak-supervised approaches have been majorly discussed in the light of limited annotated data availability. Likewise, other correlated challenges have been presented along-with recommendations based on a relevant literature review and similar studies. This review is helpful in streamlining the development of an AI based localizer for X-ray images while extendable for other radiological reports
    corecore